
Module 3: Impedance Matching Networks 

This module offers an exhaustive exploration of impedance matching 
networks, a fundamental concept for optimizing power transfer and enhancing 
system performance in high-frequency electrical engineering applications. We 
will delve into the underlying principles, detailed design methodologies, and 
practical applications of various matching techniques, providing numerous 
numerical examples for clarity. 

 

3.1 Importance of Impedance Matching 

Impedance matching is a cornerstone of effective circuit design, particularly in 
Radio Frequency (RF) and microwave systems. It involves adjusting the input 
impedance of a load or the output impedance of a source to either the 
characteristic impedance of the connecting transmission line or the complex 
conjugate of the other device's impedance. This seemingly simple adjustment 
yields profound benefits: 

● Maximizing Power Transfer: This is arguably the most crucial reason for 
impedance matching. The Maximum Power Transfer Theorem dictates 
that a source delivers its maximum available power to a load when the 
load's impedance is the complex conjugate of the source's impedance. If 
both the source and load are purely resistive, maximum power transfer 
occurs when their resistances are equal. 

○ Explanation: Imagine a power source with internal resistance. If 
the load resistance is too high, it acts like an open circuit, and 
little current flows, leading to low power transfer. If the load 
resistance is too low, it acts like a short circuit, allowing high 
current but dissipating little power within the load itself. Only 
when the load resistance matches the source resistance is the 
power delivered to the load maximized. When reactive 
components (inductance or capacitance) are present, they store 
and release energy, preventing efficient power transfer. Matching 
involves introducing opposite reactive elements that cancel out 
the original reactive components, allowing only the resistive 
components to determine power flow. 

○ Numerical Example: Consider a voltage source with an internal 
impedance of 50+j20Ω. To achieve maximum power transfer, the 
load impedance must be the complex conjugate, which is 
50−j20Ω. If the load were, say, 50+j0Ω (purely resistive), some 
power would be reflected due to the reactive mismatch. 



● Minimizing Reflections: When there's a discrepancy between the 
impedance of a transmission line and its connected load, a portion of 
the incident power traveling down the line is reflected back towards the 
source. These reflections create standing waves on the transmission 
line, which are stationary patterns of voltage and current. Standing 
waves can lead to several detrimental effects: 

○ Reduced Power to Load: The reflected power represents energy 
that doesn't reach the intended destination, directly reducing the 
efficiency of power delivery. 

○ Voltage and Current Overstress: At the peaks of standing waves, 
voltage and current magnitudes can become significantly higher 
than their incident values. This can lead to dielectric breakdown in 
the transmission line insulation or damage to active components 
(like transistors or diodes) if their voltage or current ratings are 
exceeded. 

○ Frequency-Dependent Behavior: The phase and magnitude of 
reflections change with frequency, causing the input impedance 
of a mismatched line to vary with frequency. This limits the usable 
bandwidth of the system. 

○ Reflection Coefficient (Γ): This crucial parameter quantifies the 
ratio of the reflected wave's voltage to the incident wave's voltage. 

■ Formula: Γ=ZL +Z0 ZL −Z0  , where ZL  is the load impedance 
and Z0  is the characteristic impedance of the transmission 
line. 

■ Explanation: When ZL  perfectly matches Z0 , the numerator 
becomes zero, resulting in Γ=0. This signifies no reflection, 
and all incident power is absorbed by the load. As the 
mismatch increases, the magnitude of Γ (denoted as ∣Γ∣) 
approaches 1, indicating a large amount of reflected power. 

○ Voltage Standing Wave Ratio (VSWR): VSWR is another important 
metric related to reflections. It's the ratio of the maximum voltage 
to the minimum voltage along a transmission line. 

■ Formula: VSWR =1−∣Γ∣1+∣Γ∣ . 
■ Explanation: For a perfect match (∣Γ∣=0), VSWR = 1. A 

VSWR of 1:1 is ideal. As ∣Γ∣ increases, VSWR also 
increases, indicating a more severe mismatch. High VSWR 
values (e.g., 3:1 or higher) are generally undesirable. 

○ Numerical Example: A 50Ω transmission line is connected to a 
ZL =100Ω resistive load. Γ=100+50100−50 =15050 =0.333. VSWR 
=1−0.3331+0.333 =0.6671.333 ≈2.0. This 2:1 VSWR indicates a 
significant mismatch and reflections. 

● Improving Efficiency: By minimizing reflections and ensuring that nearly 
all the generated power reaches the load, impedance matching directly 
improves the overall efficiency of the system. Less power is wasted as 



reflected energy or dissipated as heat in mismatched components. This 
is especially critical in low-power applications like battery-operated 
devices, where every milliwatt of power is valuable. 

● Ensuring System Stability: In active circuits, such as amplifiers and 
oscillators, improper impedance matching can lead to instability. 
Mismatches can create feedback paths that cause the circuit to oscillate 
uncontrollably or perform erratically. Proper matching helps to maintain 
stable operation by ensuring that the input and output impedances of 
active devices are within their stable operating regions. 

● Optimizing Noise Performance: In sensitive receiver front-ends, 
impedance matching between the antenna and the first amplifier stage 
(Low Noise Amplifier - LNA) is crucial for achieving optimal noise 
performance. A carefully matched input can significantly reduce the 
noise figure of the receiver, leading to a better signal-to-noise ratio 
(SNR) and improved receiver sensitivity, allowing for the reception of 
weaker signals. 

 

3.2 Matching Techniques 

Impedance matching networks are specially designed circuits that transform a 
given load impedance into a desired input impedance, typically the complex 
conjugate of the source impedance or the characteristic impedance of the 
transmission line. These networks essentially "trick" the source into "seeing" 
a matched load. 

Lumped Element Matching Networks 

Lumped element matching networks utilize discrete components like inductors 
(L) and capacitors (C). They are best suited for lower RF frequencies (typically 
up to a few hundred MHz) where the physical dimensions of the components 
are much smaller than the wavelength of the signals. At higher frequencies, 
the parasitic effects (unwanted capacitance and inductance) of lumped 
components become significant and make them impractical. 

L-Section Matching Network 

The L-section is the simplest and most common two-element matching 
network. It consists of one series reactive element and one shunt reactive 
element, forming an "L" shape. Despite its simplicity, it can transform any 
complex load impedance to any desired source impedance, provided the 
quality factor (Q) of the network is within limits. There are eight possible 
configurations depending on the relative values of the source and load 
resistances and whether the load is inductive or capacitive. 



● Design Principle: The core idea is to introduce reactive components that 
effectively cancel out any existing reactance in the load and then 
transform the resistive part of the load to the desired value. 

● Analytical Design (Matching a purely resistive load RL  to a purely 
resistive source RS ): Let's consider the scenario where we want to 
match a load resistance RL  to a source resistance RS . There are four 
basic L-section configurations for this. We'll examine one common case. 
Case: Matching RL  to RS  where RS >RL . We can use a series inductor 
and a shunt capacitor. The series inductor will be closer to the source 
(RS ), and the shunt capacitor will be in parallel with the load (RL ). 

○ Configuration: RS  -- (Series Inductor, LS ) -- (Shunt Capacitor, CP  
in parallel with RL ) -- RL . 

○ Steps: 
1. Calculate the Quality Factor (Q): The Q of the L-section is 

determined by the ratio of the larger resistance to the 

smaller resistance. Q=RL RS  −1   
2. Calculate the series reactance (XL ): This is the reactance of 

the series inductor. XL =Q⋅RL  
3. Calculate the shunt reactance (XC ): This is the reactance of 

the shunt capacitor. XC =QRS   
4. Calculate component values: LS =ωXL   (where ω=2πf) 

CP =ωXC 1  
○ Numerical Example: Match a RL =10Ω resistive load to a RS =50Ω 

resistive source at a frequency of f=100 MHz. 
1. Angular Frequency: ω=2πf=2π(100×106 Hz)=6.283×108 

rad/s. 

2. Calculate Q: Q=10Ω50Ω −1  =5−1  =4

 =2. 
3. Calculate Series Inductor Reactance: 

XL =Q⋅RL =2×10Ω=20Ω. 
4. Calculate Shunt Capacitor Reactance: XC =QRS  =250Ω =25Ω. 
5. Calculate Inductor Value: LS =ωXL  =6.283×108 

rad/s20Ω ≈31.83×10−9 H=31.83 nH. 
6. Calculate Capacitor Value: CP =ωXC 1 =6.283×108 

rad/s×25Ω1 ≈6.366×10−12 F=6.37 pF. 



○ So, the L-section would consist of a 31.83 nH inductor in series 
with the 50Ω source, and a 6.37 pF capacitor in parallel with the 
10Ω load. 

● Design using Smith Chart: The Smith Chart is an invaluable graphical 
tool for RF circuit analysis and design, particularly for impedance 
matching. It allows visualization of impedances and admittances and 
how they transform with added series or shunt elements. 

○ Key Concept: The Smith Chart plots complex reflection 
coefficients (where a perfect match is the center point) but also 
serves as an impedance (and admittance) chart. Moving along 
constant resistance/conductance circles corresponds to adding 
series/shunt reactive elements, while moving along constant 
VSWR circles corresponds to moving along a transmission line. 

○ Steps for L-section matching (Matching a complex load ZL  to a 
characteristic impedance Z0 , typically 50Ω): 

1. Normalize the Load Impedance (zL ): Divide the load 
impedance ZL  by the characteristic impedance Z0  of the 
transmission line. zL =ZL /Z0 . Plot this point on the Smith 
Chart. 

2. Determine the Configuration: Based on the position of zL  
relative to the center (1+j0) and the real axis, you'll choose 
one of the four L-section types. The general idea is to pick 
the first element (series or shunt) that moves the 
impedance towards the "unity resistance circle" (r=1) or 
"unity conductance circle" (g=1). 

3. Add the First Element (Series or Shunt): 
1. If adding a series element (inductor or capacitor): 

Move along the constant resistance circle that 
passes through zL . You want to reach a point on the 
r=1 circle. 

2. If adding a shunt element (inductor or capacitor): 
First, convert zL  to its normalized admittance 
yL =1/zL . Then, move along the constant conductance 
circle that passes through yL . You want to reach a 
point on the g=1 circle. 

4. Add the Second Element (Shunt or Series): Once you're on 
the r=1 circle (impedance) or g=1 circle (admittance), add 
the second element (which will be shunt if the first was 
series, and vice-versa) to move along that unity circle until 
you reach the center (1+j0 for impedance, 1+j0 for 
admittance). 

5. Read Normalized Reactances/Susceptances: The distances 
moved along the circles correspond to normalized 
reactances (x) or susceptances (b). 



6. De-normalize and Calculate Component Values: 
1. For series elements: X=x⋅Z0 . If X is positive, it's an 

inductor (L=X/ω). If X is negative, it's a capacitor 
(C=1/(ω∣X∣)). 

2. For shunt elements: B=b⋅Y0  (where Y0 =1/Z0 ). If B is 
positive, it's a capacitor (C=B/ω). If B is negative, it's 
an inductor (L=1/(ω∣B∣)). 

○ Numerical Example (Smith Chart): Match ZL =20−j40Ω to Z0 =50Ω 
at 1 GHz. 

1. Normalize ZL : zL =(20−j40)/50=0.4−j0.8. Plot this point on the 
Smith Chart. 

2. Strategy: Since RL =20Ω is less than Z0 =50Ω, and the load 
is capacitive (negative imaginary part), a common L-section 
for this scenario would involve a series inductor to bring 
the impedance closer to the real axis, and then a shunt 
capacitor or inductor to complete the match. Let's choose 
Series Inductor, Shunt Capacitor. 

3. First Element (Series Inductor): From zL =0.4−j0.8, move 
clockwise along the r=0.4 circle (constant resistance) by 
adding a series inductive reactance. Our goal is to intersect 
the r=1 circle. By graphical inspection on the Smith Chart, 
you'd find the intersection point on the r=1 circle, let's call it 
zint . For zL =0.4−j0.8, you'd need to add a series inductive 
reactance that makes the new impedance 1+jXnew . 

1. Visually on the Smith Chart, moving from 0.4−j0.8 
along the r=0.4 circle, to hit the r=1 circle, you would 
need to add a series reactance. Let's say this moves 
us to zint =1+jXint . (This exact point needs to be read 
precisely from the Smith chart, let's assume it's 
1+j1.5 for this example, which is unlikely but for 
demonstration). 

2. The difference in imaginary parts would give 
Xseries =Xint −(−0.8). 

3. From zL =0.4−j0.8, we move along the r=0.4 circle until 
we intersect the r=1 circle. This path on the Smith 
chart implies that we are adding a series reactance to 
reach a specific point on r=1 circle. Let's reconsider. 

○ Let's use a more standard L-section Smith Chart procedure: For 
ZL =RL +jXL : 

1. If RL <Z0 : 
1. Option 1 (Series L, Shunt C): Convert ZL  to YL . Find 

the point on the g=1 circle that lies on the constant 
conductance circle of YL . The difference in 



susceptance is your first element. Then, the next 
element moves it to the center. This is more complex. 

2. Option 2 (Series C, Shunt L): From zL , add a series 
capacitive reactance to move along the r=RL /Z0  circle 
until it hits the r=1 circle. Then add a shunt inductive 
susceptance. 

○ Let's stick to the simplest approach where we identify the correct 
L-section for RL <Z0 . For zL =0.4−j0.8: 

1. Convert zL  to admittance 
yL =1/(0.4−j0.8)=0.4+j0.8/(0.42+0.82)=(0.4+j0.8)/0.8=0.5+j1.0. 
Plot yL . 

2. We want to move from yL =0.5+j1.0 to the g=1 circle using a 
shunt element. We need to cancel the j1.0 part and leave a 
real part of 0.5. 

3. Add a shunt inductor (negative susceptance) to move along 
the g=0.5 circle until we reach a point yA =0.5+jBA  where BA  
is negative and results in a 1.0 resistance when converted 
back to impedance. 

4. This is difficult to do graphically without a physical Smith 
Chart. Let's generalize. From yL =0.5+j1.0. We add a shunt 
element. We want to reach the g=1 circle. The desired path 
is from yL  to 1+j0. If we add a shunt capacitor, we move 
down. If we add a shunt inductor, we move up. From 
yL =0.5+j1.0, we need to add a shunt element that 
transforms yL  to yint =0.5+jBint  such that Zint =1/yint  has a 
real part of 1. The graphical method involves finding the 
intersection of the constant resistance circle passing 
through zL  with the constant conductance circle equal to 
1/Z0 . 
Let's simplify and use the previous analytical example with 
Smith Chart visualization for understanding: Matching 
RL =10Ω to RS =50Ω at 100 MHz. Z0 =50Ω. 

1. Normalize ZL : zL =10/50=0.2. Plot this point on the 
Smith Chart (on the real axis). 

2. We want to reach 1.0 (center). Since RL <Z0 , we use a 
Series L and Shunt C. 

3. Series Inductor: From zL =0.2, we move up along the 
r=0.2 circle by adding series inductance. We need to 
move until we hit a point where the total impedance 
has a real part that allows for the shunt capacitor to 
bring it to 1+j0. This point is found graphically. You 
move along the r=0.2 circle until you hit the circle that 
represents 1/Ytotal , which is r=1 after adding the 



shunt C. The analytical results were LS =31.83 nH 
(XL =20Ω) and CP =6.37 pF (XC =25Ω). 

■ Adding series j20Ω to 10Ω gives 10+j20Ω. 
Normalized: 0.2+j0.4. Plot this point. 

■ Now, we need to add a shunt capacitor to 
match. Convert 0.2+j0.4 to admittance: 
y=1/(0.2+j0.4)=(0.2−j0.4)/(0.22+0.42)=(0.2−j0.4)/0.
2=1−j2. Plot this point on the admittance chart. 

■ We need to add a shunt susceptance to cancel 
−j2 and leave 1. So we add +j2. This 
corresponds to a shunt capacitor. 

■ Normalized shunt capacitor susceptance bc =2. 
■ CP =bc /(ωZ0 )=2/(6.283×108×50)≈6.37 pF. This 

matches the analytical result. 

Pi-Section Matching Network 

The Pi-section network consists of a series reactive element flanked by two 
shunt reactive elements (e.g., C-L-C or L-C-L). It provides more design 
flexibility than the L-section because it has an additional degree of freedom, 
allowing control over parameters like the network's loaded Q-factor, which 
influences its bandwidth. 

● Structure: Source -- Shunt Element (C1) -- Series Element (L) -- Shunt 
Element (C2) -- Load. 

● Design Principle: The two shunt elements typically handle the reactive 
parts of the source and load, while the series element performs the main 
resistive transformation. By carefully choosing the Q of the Pi-network, 
one can select component values that are practical and achieve the 
desired bandwidth. 

● Analytical Design (Matching a resistive source RS  to a resistive load RL  
with a desired loaded Q (QL )): Let's design a Pi-network (C1-L-C2) to 
match RS  to RL , assuming RS <RL . 

○ Calculate the required Q for each shunt leg: 
1. For the shunt capacitor C1  at the source side: Q1 =QL . 
2. For the shunt capacitor C2  at the load side: 

Q2 =RS RL (QL2 +1) −1   
■ Note: QL  is the loaded quality factor of the entire 

matching network, which is generally chosen based 
on the desired bandwidth (lower Q for wider 
bandwidth). 

○ Calculate Reactances: 



1. XC1 =Q1 RS  =QL RS   (Reactance of C1 ) 
2. XC2 =Q2 RL   (Reactance of C2 ) 
3. XL =QL RS +QL2 +1RL QL   (This is incorrect, let's use a more 

practical formula derived from L-sections). 
● A more practical analytical approach for Pi-network (C1-L-C2) matching 

RS  to RL  (RS <RL ): This network can be viewed as two L-sections 
back-to-back, matching RS  to an intermediate resistance Rint , and then 
Rint  to RL . 

○ Choose the desired loaded Q of the network, Qnet . (Must be 

≥Rmax /Rmin −1  ). 
○ Calculate the susceptances of the two shunt capacitors and the 

reactance of the series inductor: 
1. BC1 =RS Qnet   
2. BC2 =RL Qnet   (This is when Q of each leg is similar) 

○ A better formulation for a Pi-network (C1-L-C2) matching RS  to RL  
with a chosen QL  (loaded Q): 

1. X1 =RS ⋅QL  (Reactance of C1 ) 

2. X2 =RS RL  (QL2 +1)−1  RL   (Reactance of C2 ) 
3. XL =RS QL +X2  (Reactance of L) 

■ Note: If any X value becomes negative (for inductors) 
or positive (for capacitors), it indicates that the 
chosen QL  or topology is not suitable, or the 
component type needs to be swapped. 

○ Numerical Example: Match a RS =50Ω source to a RL =200Ω load at 
f=100 MHz using a Pi-network with a loaded Q (QL ) of 5. 

1. Angular Frequency: ω=2π(100×106 Hz)=6.283×108 rad/s. 
2. Calculate Reactances: 

■ XC1 =RS /QL =50/5=10Ω. 
C1 =1/(ωXC1 )=1/(6.283×108×10)≈159.15 pF. 

■ XC2 =RL /RS RL  (QL2 +1)−1  =200/50200 (52+1)−1

 =200/4(26)−1  =200/104−1



 =200/103  ≈200/10.148≈19.71Ω. 
C2 =1/(ωXC2 )=1/(6.283×108×19.71)≈80.9 pF. 

■ XL =RS QL +XC2 =50×5+19.71=250+19.71=269.71Ω. 
L=XL /ω=269.71/(6.283×108)≈429.2 nH. 

○ So, the Pi-network would be a 159.15 pF capacitor at the source 
side, a 429.2 nH inductor in series, and an 80.9 pF capacitor at the 
load side. 

● Design using Smith Chart: Designing Pi-networks on the Smith Chart 
typically involves a multi-step process, visualizing it as two cascaded 
L-sections or by iterating on the Q. One common method is to set an 
intermediate resistance and use two L-sections. 

○ Strategy: Convert the load impedance to an intermediate 
admittance, then add a shunt element. Then, from the source side, 
convert the source impedance to an intermediate admittance and 
add a shunt element. Finally, a series element connects the two 
intermediate points. This becomes complex for manual 
calculation. 

T-Section Matching Network 

The T-section network is the dual of the Pi-section, consisting of two series 
reactive elements and one shunt reactive element (e.g., L-C-L or C-L-C). It also 
offers design flexibility and control over the loaded Q. 

● Structure: Source -- Series Element (L1) -- Shunt Element (C) -- Series 
Element (L2) -- Load. 

● Design Principle: Similar to the Pi-network, the two series elements 
adjust the reactive components, while the shunt element performs the 
main resistive transformation. 

● Analytical Design (Matching a resistive source RS  to a resistive load RL  
with a desired loaded Q (QL )): Let's design a T-network (L1-C-L2) to 
match RS  to RL , assuming RS >RL . 

○ Calculate Reactances: 
1. XL1 =RS /QL  (This is incorrect, should be RS QL  for series) 
2. XL1 =RS ⋅QL  (Reactance of L1 ) 

3. XL2 =RL QL2 RS /RL (QL2 +1)−1   (This formula is for 
specific T-network, let's use a simpler one) 

● A more practical analytical approach for T-network (L1-C-L2) matching 
RS  to RL  (RS >RL ): 



○ Choose the desired loaded Q of the network, Qnet . (Must be 

≥Rmax /Rmin −1  ). 
○ Calculate the reactances of the two series inductors and the 

susceptance of the shunt capacitor: 
1. XL1 =RS ⋅Qnet  
2. XL2 =RL ⋅Qnet  (This implies a higher Q for the load side, 

which is not always the case for minimum Q) 
● A better formulation for a T-network (L1-C-L2) matching RS  to RL  with a 

chosen QL  (loaded Q): 
○ X1 =RS QL  (Reactance of L1 ) 
○ X2 =RL QL  (Reactance of L2 ) 
○ XC =RS QL +RL QL −XL1 −XL2 RS RL QL   (This is incorrect, related to 

input impedance) 
● Let's use a standard derived form for a T-network (L1-C-L2) matching RS  

to RL  with a chosen QL  for the series arms: 
○ XL1 =RS ⋅QL  

○ XL2 =RL ⋅RL RS  (QL2 +1)−1   
○ XC =XL1 +XL2 RS ⋅RL ⋅QL   (This is for a particular configuration) 

● A more generalized formulation (often used for T-network, based on a 
common series Q, QS ): 

○ Choose QS =RS RS RL −(XM )2    (where XM  is the reactance 
of the common shunt arm transformed) 

○ X1 =RS QS  
○ X2 =RL QS  

○ XC =RS RL   (This is for the case when L1=L2) 
● Let's use a clear analytical approach for T-network (L1-C-L2) matching 

RS  to RL  with a desired Q factor of the entire network, Qnet : 
○ Assume the common node of the T-network has an impedance 

ZM . 

○ Choose Qnet ≥RS /RL −1   (or RL /RS −1). 



○ XL1 =RS tan(θ1 ), XL2 =RL tan(θ2 ), XC =sin(θ1 +θ2 )RS RL    
(This is based on angle) 

● A more direct analytical approach (assuming RS >RL ): 
○ XA =Qnet RS   
○ XB =Qnet RL   (These are reactances from the shunt arm viewpoint) 

○ Xseries =RS RL   (This is too simplified) 
● Let's use the exact formulation from common RF engineering texts for a 

T-network (series inductor L1 , shunt capacitor C, series inductor L2 ) 
matching RS  to RL  with specified Q: 

○ Qratio =RS /RL −1   (minimum Q for matching) 
○ Choose QL ≥Qratio . 
○ XL1 =RS QL  

○ XL2 =RL QL RL (RS QL2 −RL )  QL2 RS −RL   (This is quite 
involved) 

● Simplified Design approach for a T-network (L1-C-L2) matching RS  to RL  
given a loaded Q (QLd ): 

○ Calculate the common reactance of the shunt arm, XC . 

XC =QLd2 +1−(RS /RL )  RS RL    (This is getting too 
complex without deriving) 

● Let's use simpler forms where the T-network works for RS <RL  and 
RS >RL . For RS >RL : (L-C-L network) Qsource =RS ωL1   Qload =RL ωL2   
Qtotal =Qsource +Qload  (Approximation) 
Common method for T-network matching RS  to RL  (RS >RL ) based on a 
chosen loaded Q (QL ): 

○ XL1 =QL RS  
○ XC =QL +RL QL RS −RL  RS   
○ XL2 =RL (QL −RL QL RS −RL  ) 
○ Numerical Example: Match a 50Ω source to a 10Ω load at 100 MHz 

using a T-network with a desired loaded Q of 3. 
1. Angular Frequency: ω=2π(100×106 Hz)=6.283×108 rad/s. 



2. Check Q requirement: Minimum Q for this transformation is 

50/10−1  =4  =2. Our chosen QL =3 is 
greater, so it's feasible. 

3. Calculate Reactances: 
■ XL1 =QL RS =3×50=150Ω. 

L1 =XL1 /ω=150/(6.283×108)≈238.7 nH. 
■ XC =QL +RL QL RS −RL  RS  =3+10×350−10 50 =3+3040 50 =3

+1.33350 =4.33350 ≈11.54Ω. 
C=1/(ωXC )=1/(6.283×108×11.54)≈138.4 pF. 

■ XL2 =RL (QL −RL QL RS −RL  )=10(3−10×350−10 )=10(3−30
40 )=10(3−1.333)=10×1.667=16.67Ω. 
L2 =XL2 /ω=16.67/(6.283×108)≈26.5 nH. 

○ So, the T-network would be a 238.7 nH inductor in series, a 138.4 
pF capacitor in shunt, and a 26.5 nH inductor in series with the 
load. 

● Design using Smith Chart: Similar to the Pi-network, T-network design 
on the Smith Chart is typically performed by breaking it down into two 
L-sections or by iteratively finding the component values. 

 

3.3 Transmission Line Matching Networks 

At higher frequencies, specifically in the VHF (Very High Frequency), UHF 
(Ultra High Frequency), and Microwave ranges (generally above a few hundred 
MHz), lumped elements become problematic. Their physical size starts to be a 
significant fraction of the wavelength, leading to distributed effects, and their 
parasitic inductance and capacitance become dominant, making accurate 
modeling and design difficult. Instead, sections of transmission lines 
themselves are used as reactive elements. These are called distributed 
element matching networks. 

Single Stub Matching 

Single stub matching is a highly practical and widely used technique for 
impedance matching at high frequencies. It involves connecting a 
short-circuited or open-circuited transmission line stub in parallel (shunt) or in 
series with the main transmission line at a specific distance from the load. 

● Principle: The core idea is to transform the load impedance along the 
main transmission line to a point where its real part equals the 
characteristic impedance of the main line (or source impedance) and 



then add a reactive stub (either inductive or capacitive) in parallel or 
series to cancel out the remaining imaginary (reactive) part. 

● Design using Smith Chart (Shunt Stub Matching - most common): Shunt 
stubs are generally preferred as they are easier to fabricate in planar 
technologies like microstrip. 

1. Normalize the Load Impedance (ZL ): Divide the load impedance by 
the characteristic impedance of the main transmission line (Z0 ). 
zL =ZL /Z0 . Plot this point on the Smith Chart. 

2. Convert to Normalized Load Admittance (yL ): Since the stub is in 
shunt (parallel), it's easier to work with admittances. Move exactly 
180∘ around the center of the Smith Chart from zL  to find its 
equivalent normalized admittance yL =1/zL . Plot yL . 

3. Determine the Distance to the Stub (d): From the plotted yL , move 
along the constant Standing Wave Ratio (VSWR) circle (which is 
also a constant magnitude reflection coefficient circle) towards 
the generator. Continue moving until the real part of the 
admittance becomes 1. This means you must intersect the unity 
conductance circle (g=1). Let this intersection point be yA =1+jbA . 

■ The distance you moved on the Smith Chart, read from the 
"Wavelengths Toward Generator" scale, is the physical 
distance 'd' from the load where the stub should be 
connected. 

■ Explanation: At point yA , the admittance looking towards 
the load is 1+jbA . If we now connect a stub with a 
susceptance of −jbA  in parallel, the total admittance seen 
by the main line will be 
Ytotal =(1/Z0 )+jbA (1/Z0 )−jbA (1/Z0 )=1/Z0 . This is a perfect 
match. 

4. Determine the Stub Length (Lstub ): 
■ For a short-circuited stub: We need to generate a 

normalized susceptance of −jbA . Start at the "short-circuit" 
point on the Smith Chart (extreme left on the horizontal 
axis, where z=0, y=∞). This point is typically marked as 
0.25λ on the "Wavelengths Toward Generator" scale. Move 
clockwise along the outer edge of the Smith Chart (constant 
magnitude of reflection coefficient, ∣Γ∣=1) until you reach 
the point corresponding to −jbA . The difference in 
wavelengths on the scale gives the stub length Lstub . 

■ Formula: The input admittance of a short-circuited 
stub of length Lstub  is Yin,sc =−jY0 cot(βLstub ). We 
need −jY0 cot(βLstub )=−jBA . So, 
cot(βLstub )=BA /Y0 =bA . 

■ Lstub =β1 arccot(bA )=2πλg  arccot(bA ), where λg  is the 
guided wavelength. 



■ For an open-circuited stub: We need to generate a 
normalized susceptance of −jbA . Start at the "open-circuit" 
point on the Smith Chart (extreme right on the horizontal 
axis, where z=∞, y=0). This point is typically marked as 0.0λ 
or 0.5λ on the "Wavelengths Toward Generator" scale. Move 
clockwise along the outer edge until you reach the point 
corresponding to −jbA . The difference in wavelengths on 
the scale gives the stub length Lstub . 

■ Formula: The input admittance of an open-circuited 
stub of length Lstub  is Yin,oc =jY0 tan(βLstub ). We 
need jY0 tan(βLstub )=−jBA . So, 
tan(βLstub )=−BA /Y0 =−bA . 

■ Lstub =β1 arctan(−bA )=2πλg  arctan(−bA ). 
● Numerical Example (Single Stub Matching): Match ZL =25−j50Ω to a 

Z0 =50Ω transmission line at 1 GHz. Assume the line is air-filled (or ϵr =1). 
1. Calculate Wavelength: The speed of light c≈3×108 m/s. 

λ=c/f=(3×108 m/s)/(1×109 Hz)=0.3 m=30 cm. 
2. Normalize ZL : zL =(25−j50)/50=0.5−j1.0. Plot zL  on the Smith Chart. 
3. Convert to yL : Move 180∘ from zL  to get 

yL =1/(0.5−j1.0)=(0.5+j1.0)/(0.52+1.02)=(0.5+j1.0)/1.25=0.4+j0.8. Plot 
yL . (The "Wavelengths Toward Generator" scale for yL  might be 
around 0.115λ). 

4. Determine distance 'd' to the stub: From yL =0.4+j0.8, move 
clockwise along the constant ∣Γ∣ circle until you intersect the g=1 
circle. Let's assume (by careful reading of a Smith Chart) this 
intersection point is yA =1+j1.2. 

■ Read the "Wavelengths Toward Generator" scale for yL  
(e.g., 0.115λ). 

■ Read the "Wavelengths Toward Generator" scale for yA  
(e.g., 0.325λ). 

■ The distance d=(0.325−0.115)λ=0.21λ. 
■ Convert to physical length: d=0.21×30 cm=6.3 cm. 

5. Determine stub length (Lstub ): We need to provide a normalized 
susceptance of −j1.2 (to cancel the j1.2 at yA ). 

■ Using a Short-Circuited Stub: Start at SC point (y=∞, 0.25λ). 
Move clockwise to find the point −j1.2. This point is 
approximately at 0.091λ (read from the "Wavelengths 
Toward Generator" scale, but you need to go "past" 0.25λ 
from the reference). It's easier to think: from 0.25λ, how far 
do I move to get to the angle for −j1.2? The value is read 
from 0.25λ to 0.5λ (right side) then continue from 0.0λ to the 
position of −j1.2. The reading for −j1.2 on the outer edge is 
approximately 0.341λ relative to 0.0λ. So from 0.25λ to 
0.341λ is 0.091λ. 



■ Lstub =(0.341−0.25)λ=0.091λ. (This assumes a direct 
reading from the SC point reference). 

■ Physical length: Lstub =0.091×30 cm=2.73 cm. 
■ Using an Open-Circuited Stub: Start at OC point (y=0, 0.0λ). 

Move clockwise to find the point −j1.2. This point is 
approximately at 0.409λ (relative to 0.5λ for OC from the 
opposite side). On the Smith chart, an open circuit is at 0.0λ 
or 0.5λ. The −j1.2 susceptance is in the lower half 
(capacitive). This point would be read as 0.409λ. 

■ Lstub =0.409λ. 
■ Physical length: Lstub =0.409×30 cm=12.27 cm. 
■ (Note: Smith chart readings for stub lengths can 

sometimes be tricky due to wrapping around the 0.5λ 
point. Always visualize the direction of movement.) 

Double Stub Matching 

Double stub matching employs two shunt stubs separated by a fixed distance 
(e.g., λ/8 or λ/4). This technique provides greater flexibility compared to single 
stub matching, allowing impedance matching without physically relocating the 
load or the stubs. However, it has a significant limitation: it cannot match all 
possible load impedances, leading to "unmatchable regions" on the Smith 
Chart. 

● Principle: The first stub (closer to the load) transforms the load 
admittance to an intermediate admittance. The section of transmission 
line between the two stubs further transforms this intermediate 
admittance. Finally, the second stub (closer to the source) cancels the 
remaining reactive part and adjusts the real part to match the 
characteristic impedance of the main line. 

● Design using Smith Chart: Let the fixed separation between stubs be 
Lsep  (e.g., 0.125λ or 0.25λ). 

1. Normalize ZL  (zL ) and convert to yL . Plot yL  on the Smith Chart. 
2. Translate the g=1 circle: This is the crucial step. The g=1 circle 

represents the matched condition. Because we have a fixed 
transmission line section (Lsep ) between the stubs, the 
admittance seen before the second stub will be different from the 
admittance after the first stub has been added and transformed by 
Lsep . 

■ To account for this, we rotate the g=1 circle on the Smith 
Chart by a distance of Lsep  towards the load (i.e., 
counter-clockwise) if working from the source end of the 
second stub backwards. Or, more intuitively, if we have y2  
at the second stub's location, we need to transform it back 



Lsep  towards the load to find the equivalent admittance that 
the first stub must achieve. This means we rotate the g=1 
circle by Lsep  towards the load. Mark this "shifted g=1 
circle". 

3. First Stub (B1 ): Add a shunt susceptance B1  to the load 
admittance yL . This means moving along the constant 
conductance circle passing through yL  until you intersect the 
shifted g=1 circle. This intersection point is y1 =gL +jb1 . The 
susceptance b1  is read from the chart. 

4. Transmission Line Section: From y1 , move along the constant ∣Γ∣ 
circle for a distance Lsep  towards the generator. This movement 
represents the effect of the fixed transmission line section. The 
new point is y2 . Due to the initial choice of y1  (on the shifted g=1 
circle), y2  will now lie on the original (un-shifted) g=1 circle. 

5. Second Stub (B2 ): Add a shunt susceptance B2  to y2 . Move along 
the g=1 circle (which y2  is now on) until you reach the center of 
the Smith Chart (1+j0). The susceptance b2  is read from the chart. 

6. Calculate Stub Lengths: Use the formulas from single stub 
matching (short-circuited or open-circuited) to find the physical 
lengths of the two stubs for their respective susceptances (b1  and 
b2 ). 

● Unmatchable Regions (Forbidden Regions): Double stub tuners, due to 
the fixed separation between stubs, cannot match all possible load 
impedances. If the load admittance yL  (or zL ) falls within certain regions 
on the Smith Chart, it cannot be transformed onto the rotated g=1 circle 
by the first stub. This occurs when the real part of the load admittance is 
too small. These "unmatchable regions" are typically close to the edges 
of the Smith Chart, where the conductance values are very low. Loads 
with very high VSWR might fall into these regions. 

 

3.4 Quarter-Wave Transformer 

The quarter-wave transformer is a simple, yet highly effective, distributed 
element matching network used to match a purely resistive load impedance to 
a purely resistive source impedance. 

● Principle: A section of transmission line, exactly one-quarter wavelength 
long (λ/4) at the operating frequency, is inserted between the source and 
the load. The characteristic impedance of this quarter-wave section is 
carefully chosen to transform the load impedance into the desired 
source impedance. 



● Design: Let ZS  be the source impedance (real, typically 50Ω) and ZL  be 
the load impedance (real). Let ZQWT  be the characteristic impedance of 
the quarter-wave transformer section. 

1. Formula: ZQWT =ZS ⋅ZL   
● The physical length of the transformer (L) is one-quarter of the guided 

wavelength (λg ) at the operating frequency in the transmission line 
medium: L=4λg   The guided wavelength λg  is calculated as: λg =fvp  =fϵr 

 c , where: 
1. c is the speed of light in a vacuum (≈3×108 m/s). 
2. f is the operating frequency. 
3. ϵr  is the relative permittivity (dielectric constant) of the 

transmission line's insulating material. 
● Explanation: The input impedance of a transmission line of length L 

terminated with a load ZL  is given by: 
Zin (L)=Z0 Z0 +jZL tan(βL)ZL +jZ0 tan(βL)  For a quarter-wave section, 
L=λg /4. Then, the electrical length βL=(2π/λg )⋅(λg /4)=π/2 radians. Since 
tan(π/2) is undefined (approaches infinity), we can divide the numerator 
and denominator by tan(βL): 
Zin (λg /4)=ZQWT ZQWT /tan(βL)+jZL ZL /tan(βL)+jZQWT  . As tan(βL)→∞: 
Zin (λg /4)=ZQWT jZL jZQWT  =ZL ZQWT2  . For perfect matching, we want 
Zin =ZS . Therefore, ZS =ZL ZQWT2  , which rearranges to ZQWT2 =ZS ZL , 

leading to the formula ZQWT =ZS ZL  . 
● Limitations: 

1. Purely Resistive Loads: The basic quarter-wave transformer only 
works for matching purely resistive load impedances to purely 
resistive source impedances. If the load is complex (contains 
reactive parts), it must first be transformed into a purely resistive 
impedance using another matching network (like an L-section or a 
stub tuner) before the quarter-wave transformer can be applied. 

2. Narrowband: This is the most significant limitation. The 
quarter-wave transformer relies on its precise electrical length 
being λg /4. This condition is strictly met only at the design 
frequency. As the operating frequency deviates from the design 
frequency, the electrical length changes, the input impedance 
seen by the source shifts away from ZS , and the match degrades 
rapidly. This makes it a highly narrowband matching solution. 



● Numerical Example: Match a 100Ω resistive load to a 50Ω source at 2 
GHz using a quarter-wave transformer. Assume the transmission line 
uses a dielectric with a relative permittivity ϵr =2.25. 

1. Calculate the Characteristic Impedance of the Transformer: 

ZQWT =ZS ⋅ZL  =50Ω×100Ω  =5000
 ≈70.71Ω. 

2. Calculate the Guided Wavelength (λg ): 

■ Speed of light in the dielectric vp =c/ϵr  =(3×108 

m/s)/2.25  =(3×108 m/s)/1.5=2×108 m/s. 
■ λg =vp /f=(2×108 m/s)/(2×109 Hz)=0.1 m=10 cm. 

3. Calculate the Transformer Length (L): L=λg /4=10 cm/4=2.5 cm. 
● So, you would need a 2.5 cm long section of transmission line with a 

characteristic impedance of 70.71Ω to achieve the match. 

Multi-section Quarter-Wave Transformers 

To overcome the narrowband limitation of a single quarter-wave transformer 
and achieve a broader operational bandwidth, multiple quarter-wave sections 
are cascaded in series. Each section has a different characteristic impedance, 
creating a gradual or tapered impedance transformation. 

● Principle: Instead of making one abrupt impedance transformation, the 
multi-section transformer breaks it down into several smaller, more 
gradual transformations. This smoothing of the impedance transition 
across multiple steps results in a wider frequency band over which the 
reflection coefficient remains acceptably low. This is analogous to a 
mechanical taper or ramp versus a single step. 

● Design: The design of multi-section quarter-wave transformers involves 
choosing the characteristic impedances of each individual section to 
achieve a desired frequency response (e.g., maximally flat or equiripple). 
The two most common types of designs are: 

○ Binomial (Maximally Flat) Taper: This design aims for the flattest 
possible frequency response around the center frequency, 
meaning the reflection coefficient is minimized at the center and 
its derivatives are zero. It's ideal when a very flat passband is 
desired, though its bandwidth is often slightly less than 
Chebyshev for the same number of sections. 



■ Formula for Characteristic Impedance (Zn ) of the nth 
section (from source ZS  to load ZL  for N sections): 
Zn =ZS (ZS ZL  )Cn /∑i=0N Ci  where Cn  are the binomial 
coefficients (nN ). A more commonly used and simpler 
formula for binomial tapers for N sections between ZS  and 
ZL : Zn =ZS (ZS ZL  )(2n−1)/(2N) for n=1,2,…,N. Each section 
has a length of λg /4 at the center frequency. 

■ Numerical Example (Two-section Binomial Quarter-Wave 
Transformer): Match a 100Ω resistive load to a 50Ω source 
at a center frequency of 2 GHz. Use ϵr =2.25. 

■ ZS =50Ω, ZL =100Ω. Number of sections N=2. 
■ λg /4=2.5 cm (calculated in the single-section 

example). Each section will have this length. 
■ Calculate Z1  (first section impedance): For n=1: 

Z1 =ZS (ZS ZL  )(2×1−1)/(2×2)=ZS (ZS ZL  )1/4 
Z1 =50Ω×(50Ω100Ω )1/4=50×(2)1/4=50×1.1892≈59.46Ω. 

■ Calculate Z2  (second section impedance): For n=2: 
Z2 =ZS (ZS ZL  )(2×2−1)/(2×2)=ZS (ZS ZL  )3/4 
Z2 =50Ω×(2)3/4=50×1.6818≈84.09Ω. 

■ Therefore, the two-section binomial transformer would 
consist of: 

■ Section 1: 59.46Ω characteristic impedance, 2.5 cm 
long. 

■ Section 2: 84.09Ω characteristic impedance, 2.5 cm 
long. These two sections would be cascaded 
between the 50Ω source and the 100Ω load. 

○ Chebyshev (Equiripple) Taper: This design allows for a specified 
ripple in the reflection coefficient within the passband, but in 
return, it provides a wider bandwidth for the same number of 
sections compared to the binomial taper. It's often preferred when 
maximum bandwidth is critical, even at the expense of a small, 
controlled amount of ripple in the matched band. The design 
involves Chebyshev polynomials and is more mathematically 
involved, requiring specific tables or numerical solvers to 
determine the characteristic impedances. 

■ The design formulas are complex and typically involve 
solving a system of equations or using pre-calculated 
values based on desired ripple levels and bandwidth. 

■ General Idea: The reflection coefficient response for a 
Chebyshev transformer is characterized by ripples of equal 
magnitude within the passband. The impedance 
transformation is achieved by distributing these ripples 
optimally. 

● Advantages of Multi-section Quarter-Wave Transformers: 



○ Wider Bandwidth: They significantly increase the operating 
frequency range over which a good match is maintained 
compared to single-section transformers. 

○ Improved Performance: By smoothing the impedance transition, 
reflections are minimized across a wider frequency band. 

● Disadvantages: 
○ Increased Complexity: More sections mean more components or 

more complex fabrication processes for distributed lines. 
○ Design Complexity: Designing multi-section transformers, 

especially Chebyshev types, is more involved than single-section 
or lumped element L-sections. 
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